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Review

Recent epidemiologic studies have demon-
strated significant relationships between circu-
lating levels of thyroid hormones (THs) and 
exposures to environmental chemicals (Blount 
et al. 2006; Boas et al. 2006; Longnecker et al. 
2003; Steinmaus et al. 2007). In controlled 
animal studies, environmental chemicals have 
been shown to cause a reduction in serum 
TH levels, also supporting a causal associa-
tion (Boas et al. 2006; Brucker-Davis 1998; 
DeVito et al. 1999; Zoeller 2007). In this 
article we review the role of THs in develop-
ment and adult life, the impact of xenobiotics 
on thyroid status, the relationships between 
adverse outcomes of thyroid disruption and 
upstream causal biomarkers, and the soci-
etal implications of perturbations in THs by 
xenobiotic chemicals.

The Role of THs in Development
THs include both thyroxine (T4) and triiodo
thyronine (T3). The independent regulation 
of circulating levels of these two forms of TH 
is complex, but in this review we refer gen-
erally to both forms as TH. THs are evo-
lutionarily conserved molecules present in 
all extant vertebrates and some invertebrates 
(Heyland and Moroz 2005). Molecular 

signaling pathways regulated by these hor-
mones affect development, energy balance, 
and metabolism in all taxonomic groups. For 
example, TH induces metamorphosis in the 
sand dollar (Heyland et al. 2004), flounder 
(Yamano et al. 1994), and frogs (Buchholz 
et al. 2005), and TH is essential for develop-
ment in birds (McNabb 2006) and mammals 
(Zoeller and Rovet 2004). In humans, TH is 
important for normal development of brain 
(Bernal 2007; Oerbeck et al. 2007), lungs 
(Bizzarro and Gross 2004; van Tuyl et al. 
2004), heart (Danzi et al. 2005; Grover et al. 
2005; Stoykov et al. 2006), and other organs. 
Likewise, the mechanism(s) by which THs 
exert their actions through nuclear receptors 
that influence gene expression is highly con-
served across the vertebrate taxa (Bertrand 
et al. 2004; Buchholz et al. 2006; Whitfield 
et al. 1999).

The regulation of serum TH levels and 
of TH action in various tissues involves a 
complex interplay of physiologic processes. 
Thyroid function depends on iodine uptake, 
TH synthesis and storage in the thyroid 
gland, stimulated release of hormone into 
and transport through the circulation, hypo-
thalamic/pituitary control of TH synthesis, 

cellular TH transporters, tissue-specific TH 
deiodination, and degradation of THs by 
catabolic hepatic enzymes (Figure 1). Given 
the key role of TH for normal development 
and physiologic function in all vertebrates, it 
is important to identify environmental fac-
tors that may adversely affect thyroid func-
tion and/or TH signaling and to evaluate 
their ability to adversely affect public health 
(Brucker-Davis 1998). In addition, because 
of the highly conserved nature of TH chemis-
try, synthesis, signaling, and regulation, envi-
ronmental factors that affect thyroid function 
or TH signaling in one species may well affect 
thyroid function or TH signaling in others—
including humans.

THs and nervous system development. It 
is becoming clear that, although somatic and 
brain growth retardation occur with severe 
TH insufficiency, moderate or even transient 
TH insufficiency can cause specific develop-
mental defects in rodents (Auso et al. 2004; 
Crofton 2004; Crofton et al. 2000; Goldey 
et al. 1995a, 1995b; Goodman and Gilbert 
2007; Morreale de Escobar 2003) and in 
humans (Haddow 2005; Haddow et al. 1999; 
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Objectives: We review the role of TH in nervous system development and specific outcomes in 
adults, the impact of xenobiotics on thyroid signaling, the relationship between adverse outcomes of 
thyroid disruption and upstream causal biomarkers, and the societal implications of perturbations 
in thyroid signaling by xenobiotic chemicals.
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Data synthesis: THs are critical for normal nervous system development, and decreased maternal 
TH levels are associated with adverse neuropsychological development in children. In adult humans, 
increased thyroid-stimulating hormone is associated with increased blood pressure and poorer blood 
lipid profiles, both risk factors for cardiovascular disease and death. These effects of thyroid suppres-
sion are observed even within the “normal” range for the population. Environmental chemicals may 
affect thyroid homeostasis by a number of mechanisms, and multiple chemicals have been identified 
that interfere with thyroid function by each of the identified mechanisms.
Conclusions: Individuals are potentially vulnerable to adverse effects as a consequence of expo-
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Kooistra et al. 2006; Oerbeck et al. 2003, 
2007; Pop et al. 1999, 2003; Pop and Vulsma 
2005). Small differences (~25%) in point-
estimates of maternal T4 during the early 
fetal period are associated with adverse out-
comes (e.g., reduced IQ scores), even though 
these deficits do not constitute clinical hypo
thyroidism (Haddow et al. 2002; Morreale de 
Escobar et al. 2000). However, in a hallmark 
study by Bongers-Schokking et al. (2000), the 
Mental Development Index of children with 
congenital hypothyroidism was affected by 
the age of onset of treatment, rather than the 
serum free T4 concentration after treatment. 
Thus, the degree of TH insufficiency is not 
the only variable affecting human develop-
ment; the duration of the insufficiency and 
the developmental timing of the insufficiency 

are also important and may vary by species, 
presenting a challenge for hazard assessment.

Experimental work in animals provides 
strong support for the hypothesis that mod-
erate TH insufficiency can alter development 
in rodents. Integrating data over a series 
of studies, a decrease in serum total T4 by 
50% during the critical period for cochlear 
development was associated with a perma-
nent hearing loss in adult offspring (Crofton 
2004). Auso et  al. (2004) found that less 
than a 30% decrease in serum total T4 in 
dams, for only 3 days, was associated with 
structural abnormalities in the brains of their 
offspring. An average decrease in serum total 
T4 of only 28% in 2-week-old pups given 
low doses of propylthiouracil was associated 
with marked reduction in cell density of the 

corpus callosum (Sharlin et al. 2008). Gilbert 
and Sui (2008) found that a 28% reduction 
in circulating levels of T4 in rat dams pro-
duced significant adverse effects on synaptic 
function of the adult offspring despite no 
detected change in serum T4 levels in the 
pups after birth. Thus, these experimental 
findings confirm what has been observed in 
humans: small, even transient, decreases in 
serum total T4 are associated with altered 
brain development.

TH Effects in Other Organ 
Systems and Adults
It is important to recognize that TH con-
centrations are correlated with adverse effects 
in organ systems other than the nervous sys-
tem, including the cardiovascular system and 
control of serum lipids (Asvold et al. 2007a; 
Biondi et al. 2005; Osman et al. 2001), pul-
monary system (Krude et al. 2002; Lei et al. 
2003; Mendelson and Boggaram 1991), and 
kidney. Total cholesterol, low-density lipo-
proteins (LDL), non-high-density lipopro-
teins (non-HDL), and triglycerides increased 
linearly with increasing thyroid-stimulating 
hormone (TSH), and HDL decreased con-
sistently with increasing TSH across normal 
reference ranges without evidence of any 
threshold effect (Asvold et al. 2007b). Similar 
trends in lipid profiles were identified across 
clinical categories from hypothyroid to euthy-
roid to hyperthyroid individuals (Canaris 
et al. 2000). Within the reference ranges for 
TSH, there was a linear positive association 
between TSH and both systolic and dia-
stolic blood pressure (Asvold et al. 2007b) 
(Figure 2). Intimal medial thickness, a meas
ure of atherosclerosis and predictive of coro-
nary vascular disease and stroke, was inversely 
related to free T4 after controlling for lipids, 
clinical factors, and thyroid autoantibodies 
(Dullaart et al. 2007). Some of these adverse 
effects were ameliorated by treatment with T4. 
Not surprisingly, deficits in thyroid homeo-
stasis were associated with cardiovascular risk 
in multiple epidemiologic studies. A meta-
analysis of 14 epidemiologic studies (Rodondi 
et al. 2006) found an overall increase in risk 
of coronary heart disease of > 65% in those 
with subclinical hypothyroidism (elevation 
in TSH with normal T4). A higher relative 
risk was noted in those studies that adjusted 
for most cardiovascular risk factors, suggest-
ing that confounding was not responsible for 
these effects. Treatment with l-T4 of patients 
with subclinical hypothyroidism resulted in 
improvements in cardiovascular risk factors, 
including total cholesterol and endothelial 
function (flow-mediated dilatation) (Razvi 
et  al. 2007). Michalopoulou et  al. (1998) 
found that treatment with T4 of hypercholes-
terolemic individuals who have “high normal” 
TSH values significantly reduced both total 

Figure 1. TH control pathways and sites of disruption by xenobiotic chemicals. Abbreviations: Gluc, glu-
cose; HO-PCBs, hydroxyl-PCBs; NIS, sodium/iodide symporter; PBDE, polybrominated diphenyl ether; 
PTU, propylthiouracil; T4-Gluc, T4-glucuronide; TBG, thyroid-binding globulin; TRH, thyrotropin-releasing 
hormone; TSH, thyroid-stimulating hormone; TTR, transthyretin; UDPGT, uridine diphosphate glucuronyl
transferase. Sites or processes where xenobiotics are known or hypothesized to act as TDCs are indi-
cated in the boxes and ovals. Xenobiotics that block, inhibit, or up-regulate these processes are shown in 
bold (modified from Crofton 2008). 
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and LDL cholesterol, additionally support-
ing a causal association. In addition, environ-
mental exposure to the thyroid-disrupting 
chemical (TDC) polychlorinated biphenyls 
(PCBs) had an inverse association with T3 in 
men (Meeker et al. 2007) and was associated 
with both unfavorable lipid profiles and self-
reported cardiovascular disease in men and 
women (Goncharov et al. 2008). Therefore, 
epidemiologic as well as mechanistic and ther-
apeutic evidence substantiates the concern 
that TDCs may adversely affect cardiovascular 
risk in humans by reducing serum T4.

Impact of Xenobiotics  
on TH Signaling
TDCs are broadly defined as xenobiotics that 
interfere with TH signaling. These can include 
chemicals that alter the structure or function 
of the thyroid gland (e.g., perchlorate and 
methimazole), alter binding of hormones to 
thyroid receptors (e.g., bisphenol A, PCBs, 
and polybrominated diphenyl ethers), or alter 
regulatory enzymes associated with TH syn-
thesis (e.g., propylthiouracil) (Crofton et al. 
2005). A number of extrathyroidal mecha-
nisms affect TH levels by altering binding to 
hormone transport proteins (e.g., hydroxyl-
PCBs), hepatic clearance (e.g., PCBs, triclo-
san), inhibition of deiodination to T3 (e.g., 
FD&C red dye number 3), and receptor ago-
nism/antagonism (e.g., tetrabromobisphenol 
A). The downstream consequences of these 
effects are to alter TH-directed transcrip-
tion either directly or via changes in circulat-
ing or tissue concentrations of THs. Several 
uncertainties complicate basic risk assessment 
approaches when assessing the hazards of 

TDCs. These include defining the biomarkers 
used for assessing hazard, defining the magni-
tude of change in the biomarker(s) that reli-
ably predict downstream adverse outcomes, 
intraspecies extrapolation that is hampered by 
a lack of mechanistic and dose response data, 
and predicting the effects of real life exposures 
to low-level mixtures of xenobiotics that con-
tain components that individually have vastly 
different kinetic and dynamic properties.

Several specific chemicals were shown to 
bind to TH receptors (TRs) (Zoeller 2005, 
2007). This has important implications 
because there is good evidence that differ-
ent effects of TH in the developing brain are 
mediated by different TR isoforms (Bernal 
2007). There are two different classes of TRs 
(TRα and TRβ), and different chemicals 
can selectively interact with various isoforms. 
Thus, these chemicals will likely produce 
a mosaic of effects on TH signaling in the 
developing brain and may do so without 
affecting circulating levels of TH. It also may 
be challenging to develop high-throughput 
in vitro screens for TR binding because many 
of these screens use only the ligand-binding 
domain of the receptor, and there is some 
evidence that environmental chemicals can 
bind to an allosteric site on the DNA binding 
domain of the TR (Miyazaki et al. 2008).

The variety of mechanisms by which 
TDCs alter TH signaling (Table 1) provide 
a number of biomarkers that could be used in 
assessing hazard. These include molecular tar-
gets, which could be chemical-class specific, 
and downstream consequences, such as serum 
TH concentrations, brain morphology or bio-
chemistry, or behavior. These changes may 

be either directly or indirectly related to TH 
action (Figure 3). Accurately and thoroughly 
assessing the health risks of thyroid disruption 
by environmental xenobiotics will require an 
improved understanding of how divergent 
mechanisms alter the relationship between 
serum THs and consequent adverse impacts 
on health.

The most commonly used biomarker of 
effect for TDC exposure is serum total T4 
concentrations (DeVito et al. 1999; Zoeller 
et al. 2007). Although TSH is a well-accepted 
biomarker for hypothyroidism, a number of 
xenobiotics alter circulating TH levels but 
do not change TSH (DeVito et al. 1999). 
Therefore, it is central to risk assessment to 
understand the relationship between perturba-
tions in circulating concentrations of T4 and 
adverse effects. In addition, it is important to 
test the hypothesis that changes in circulating 
concentrations of T4 represent a common 
pathway by which adverse outcomes are pro-
duced. This hypothesis is consistent with the 
accepted role of circulating concentrations of 
T4 in defining thyroid disease (Brabant et al. 
2006). Many kinds of adverse effects are asso-
ciated with either TH excess or insufficiency, 
depending on the timing, severity, and dura-
tion of the perturbation. Although the pattern 
of effects may differ, changes in serum TH are 
predictive of downstream adverse outcomes.

Upstream biomarkers of TDC expo-
sure are predictive of adverse effects if the 
mechanisms of action are well characterized. 
Mechanism 1 in Figure 4 illustrates this point: 
alterations in circulating THs during develop-
ment are predictive of adverse neurodevel-
opmental outcomes. This concept has been 

Table 1. Classes, mechanisms of action, and effects of TDCs on TH homeostasis.

Class	 Mechanism	 Effect on THs	 Chemical 	 References

Iodine transport	 Competition/block of 	 Decreased thyroidal	 Perchlorate, chlorate, bromated nitrates,  	 Tonacchera et al. 2004; Van 
	   sodium/iodide symporter	   synthesis of T3 and T4	   thiocyanate	 Sande et al. 2003; Wolff 1998
Synthesis inhibitors	 Inhibition of thyroid peroxidase	 Decreased thyroidal	 Methimazole, propylthiourea, 	 Biegel et al. 1995; Capen 1997; 
	 	   synthesis of T3 and T4	   amitrole mancozeb, soy isoflavones,	 Doerge and Sheehan 2002; Hurley
			     benzophenone 2,1-methyl-3-	 1998; Schmutzler et al. 2007
			     propyl-imidazole-2-thione
Transport disruption	 Altered binding to serum 	 Unknown	 Hydroxyl-PCBs, EMD 49209, 	 Lans et al. 1993; Schroder-van der
	   transport proteins		    pentachlorophenol	 Elst et al. 1997; van den Berg 1990
Enhanced hepatic catabolism	 Up-regulation of	 Increased biliary	 Acetochlor, phenobarbital, 	 Biegel et al. 1995; Brucker-Davis
	   glucuronylsyltransferases	   elimination of T3, T4	   3-methylcolanthrene, PCBs, 	 1998; Hood and Klaassen 2000; 
	   or sulfotransferases 	    	   1-methyl-3-propyl-imidazole-2-thione	 Hurley 1998; Liu and Klaassen 1996
	   (via CAR/PXR or AhR)
Enhanced cellular transport	 Up-regulation of organic	 Increased biliary	 1,4-Bis[2-(3,5-dichloropyridyloxy)]	 Guo et al. 2002; Jigorel et al. 2006; 
	   anion-transporting polypeptides 	   elimination of T3, T4	   benzene, PCN, TCDD, rifampicin,	 Petrick and Klaassen 2007; 
	   or MCT transporters via CAR/PXR		    phenobarbital, oltipraz	 Staudinger et al. 2001
	   or AhR
Sulfotransferases	 Inhibition of sulfotransferases	 Decrease sulfation	 Hydroxy-PCBs, triclosan, 	 Schuur et al. 1998; Wang et al. 
		    of THs	   pentachlorophenol	 2004; Wang and James 2006
Deiodinases	 Inhibition or up-regulation	 Decreased peripheral	 FD&C red dye no. 3,	 Capen 1998; Klammer et al. 2007; 
	   of deiodinases	   synthesis of T3	   propylthiouracil, PCB,	 Morse et al. 1993; Visser et al. 1979
			     octylmethoxycinnamate
TR agonists and antagonists	 Direct or indirect alterations 	 Altered activation of	 Tetrabromobisphenol A, 	 Gauger et al. 2004; Kitamura et al.
	   in TR–T3 response element	   TH-dependent gene	   bisphenol A, hydroxy-PCBs	 2005; Moriyama et al. 2002
	   binding	   transcription

Abbreviations:  Ahr, aryl hydrocarbon receptor; CAR, constitutive androstane receptor; FD&C red dye no. 3, Food, Drug and Cosmetics red dye no. 3; PCN, pregnenolone-16a-
carbonitrile; PXR, pregnane X receptor. Modified from Crofton (2008).
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known for decades and is the basis for new-
born TH screening (Rose et al. 2006). These 
adverse consequences are well documented 
in animals for xenobiotics that alter circulat-
ing levels of TH (Crofton and Zoeller 2005; 
Zoeller and Crofton 2005).

Cross-Species Extrapolation
Although interspecies extrapolation of adverse 
effects of TDCs requires careful considera
tion, there are many situations in which the 
effects of a chemical in one species are similar 
to those in another, including in humans. For 
example, perchlorate competitively inhibits 
iodine uptake into the thyroid gland, with 
subsequent decreases in TH synthesis and 
declines in circulating TH concentrations 
(Wolff 1998). The kinetics for perchlorate 
inhibition of iodine uptake in humans and 

rats are extremely similar [U.S. Environmental 
Protection Agency (EPA) 2002], indicating 
the homologous nature of the initial toxic 
event. However, species differences in the 
relationship between changes in serum total 
T4 and downstream adverse effects, perhaps 
mediated by differences in kinetics such as 
tissue TH concentrations and the sensitivity 
of specific developmental outcomes to low 
T4, cannot be ruled out at this time (National 
Research Council 2005).

For some TDCs, there may be little data 
to support cross-species extrapolation (Crofton 
2004). Both in  vivo and in  vitro studies 
suggest that PCBs activate the pregnane X 
receptor (PXR) in rodents, which leads to up-
regulation of hepatic catabolic enzymes and 
subsequent declines in circulating concentra-
tions of T4 (Schuetz et al. 1998). The steroid 

X receptor (SXR) is the human equivalent for 
rodent PXR (Blumberg et al. 1998), and there 
are species differences between PXR and SXR: 
Rodent PXR is activated by pregnenolone-
16α-carbonitrile (PCN), but not by rifam-
picin, whereas human SXR is activated by 
rifampicin but not by PCN (Kliewer et al. 
2002). In addition, in vitro data suggest that 
high concentrations of PCB-153 act as an 
antagonist at the human SXR (Tabb et al. 
2004). As well, species differences in circula-
tory transport proteins (e.g., transthyretin and 
thyroid-binding globulin) complicate extrapo-
lation from animals to humans (Capen 1997; 
Hill et al. 1998). Thus, species differences in 
the expression or structure of specific func-
tional proteins (e.g., receptors and enzymes) 
may at times affect the toxicity of specific 
compounds in different species.

Mixtures
Evaluating the potential for additive or 
synergistic (i.e., greater than additive) effects 
resulting from exposure to mixtures or envi-
ronmental xenobiotics presents challenges 
for the assessment of endocrine disruptors 
(Daston et al. 2003). Additivity for mixtures of 
chemicals with a similar target is now a default 
assumption for some classes of chemicals (U.S. 
EPA 2000). A variety of predictive models are 
available for use with mixtures of similarly act-
ing chemicals (Feron and Groten 2002; Kroes 
et al. 2005; Mumtaz et al. 1993; Teuschler 
2007; U.S. EPA 2000). For example, the toxic 
equivalents methodology predicts the cumula-
tive effects of aryl hydrocarbon receptor (AhR) 
agonists using dose addition (Haws et al. 2006; 
Van den Berg et al. 2006). However, these 
models may not predict effects of mixtures 
containing chemicals with multiple mecha-
nisms of action (e.g., synthesis inhibitors, low 
dietary iodine, hepatic catabolism). The small 
number of studies reporting effects of mix-
tures of TDCs lack, either by study design 
or statistical approach, the ability to test for 
additivity (Desaulniers et al. 2003; Khan et al. 
2005; McLanahan et al. 2007; Wade et al. 
2002). The use of rigorous statistical models is 
critical for testing hypotheses of effect or dose 
addition and determining whether antagonism 
or synergism exists (Feron and Groten 2002; 
Hertzberg and Teuschler 2002; LeBlanc and 
Olmstead 2004).

Crofton et al. (2005) tested a mixture of 
18 TDCs (dioxins, dibenzofurans, and PCBs) 
for effects on serum T4. These chemicals were 
each known to decrease circulating concentra-
tions of T4 (Craft et al. 2002; Crofton et al. 
2005; Khan and Hansen 2003; McLanahan 
et al. 2007). The mechanisms by which these 
chemicals alter THs involve up-regulation 
of hepatic catabolic enzymes (e.g., uridine 
diphosphate glucuronosyltransferases). 2,3,7,8-
Tetrachlorodibenzo-p-dioxin (TCDD), 

Figure 3. A combined mode-of-action model for the effects of TDCs on cancer and developmental out-
comes. Abbreviations: TTR, transthyretin; UDPGT, uridine diphosphate glucuronyltransferase. Mixture 
models are needed to better predict effects of mixtures containing xenobiotics that affect multiple targets 
with common downstream effects (modified from Crofton and Zoeller 2005; U.S. EPA 2002). 
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dibenzofurans, and dioxin-like PCBs activate 
a network of phase II and III proteins via 
binding of the AhR (Schrenk 1998). The non-
dioxin-like PCBs activate a slightly different 
set of enzymes (and possibly transporters) via 
binding to PXR and the constitutive andros-
tane receptor (CAR) (Kretschmer and Baldwin 
2005; Schuetz et al. 1998). These differences in 
mechanisms of action (i.e., AhR agonists and 
CAR/PXR agonists) suggest that dose addition 
theory would not predict the effects of the 
mixture. A “flexible single-chemical-required” 
method (Casey et al. 2004; Gennings et al. 
2002) demonstrated no deviation from dose 
additivity at the lowest doses of the mixture 
but a greater-than-additive effect at the high-
est mixtures doses (Figure 5). At high doses 
the dose-additivity model underpredicted the 
empirical effects by 2- to 3-fold but worked 
well at lower doses typical of environmental 
exposures.

Future work is needed to improve the 
ability of mixtures models to account for the 
homeostatic processes that are activated by 
changes in both tissue and serum TH con-
centrations. The paucity of data in this area 
makes it difficult to determine whether these 
models will accurately predict changes in 
common downstream adverse outcomes after 
exposure to complex mixtures of chemicals 
that act on multiple upstream targets. Indeed, 
the effects of the complex mixtures will likely 
depend on the interaction of both kinetic and 
dynamic factors. Increasingly, it may become 
possible to identify interactions of chemicals 
in population-based biomonitoring databases. 
For example, sizable subpopulations for whom 
the relationship between perchlorate exposure 
and serum T4 concentrations are modified by 
coexposure to thiocyanate, nutrition (iodide 
consumption), and behavior (smoking) have 
been identified using the National Health 
and Nutrition Examination Survey database 
(Blount et al. 2006; Steinmaus et al. 2007). 
Because additivity or synergy of TDCs with 
different mechanisms of action has been dem-
onstrated, as noted above, a broad approach 
to cumulative risk that would account for 
these interactions seems appropriate. This is 
particularly true considering the limitations of 
current modeling methodologies.

Causality
A critical issue affecting the interpretation of 
upstream events is the relationship between 
biomarkers captured in clinical or animal 
studies and specific adverse outcomes. Studies 
involving upstream biomarkers are most use-
ful when these biomarkers have been causally 
linked to downstream adverse outcomes. For 
example, interpreting studies of perchlorate 
and T4 are relatively straightforward because 
the only known toxic effect of perchlorate is 
interference with thyroid function (National 

Research Council 2005); thus, any effects of 
perchlorate on the nervous system are neces-
sarily interpreted to be subsequent to a reduc-
tion in serum THs.

Difficulties can arise when attempting 
to predict changes in upstream biomarkers 
based on adverse outcomes. For example, if 
the adverse outcome(s) of a specific toxicant 
or mixture is caused by more than one mecha-
nism, then individual downstream outcomes 
(i.e., “effects”) are not diagnostic of upstream 
events, and causative links between a known 
exposure and outcome are difficult to discern. 
Figure 4 illustrates this by the alternative mech-
anisms activated by chemical X that may cause 
similar adverse outcomes. Indeed, some of these 
adverse outcomes may be caused by exposure 
to other chemicals (chemical Z). A key to using 
adverse outcomes in these cases is the use of 
patterns of outcomes that may be diagnostic.

PCBs offer a good example of the prob-
lems associated with inferring upstream 
changes in THs as the causative agent of 
downstream neurotoxic outcomes. PCBs 
produce changes in a number of behavioral 
domains in humans and animals (Rice 2000; 
Schantz et al. 2003). They also affect mul-
tiple neurochemical pathways (Kodavanti 
et  al. 1993; Kodavanti and Ward 1998; 
Seegal 1996; Seegal et al. 1991) in addition 
to TH (Crofton and Zoeller 2005). Although 
changes in THs during development predict 
specific behavioral changes, effects of PCBs 
on some specific tasks in animals or outcomes 
in epidemiologic studies may not necessarily 
be attributable to changes in THs.

Another example of the difficulty in link-
ing serum TH to adverse outcomes is pro-
vided by the recent observation in humans of 
an abnormal TH profile in boys with a genetic 
mutation in the T3-specific transporter mono-
carboxylate anion transporter 8 (MCT8). In 
all cases, serum T3 is elevated, but serum T4, 
free T4, and TSH may be low, normal, or ele-
vated (Jansen et al. 2007). Thus, the elevated 
serum T3 appears to be a biomarker of the 
MCT8 mutation among the patients evalu-
ated, although it is not the only mechanism 
by which T3 can become elevated. In addi-
tion, all of the boys evaluated presented with 
severe psychomotor deficits, but it is unlikely 
that the elevated serum T3 itself was the root 
cause of their condition. Thus, environmental 
factors that influence T3 transport through 
MCT8 may represent a situation in which the 
profile of serum TH hormones is perturbed in 
ways that are not immediately recognizable as 
due to an endocrine disruptor, but may signal 
that adverse effects occur through a mecha-
nism that interferes with TH signaling.

Recognition of the role of “critical win-
dows of exposure” in characterizing causal 
relationships between toxicant effects on 
serum THs and downstream adverse effects 

is critical. Specifically, the role of TH in brain 
development changes as development pro-
ceeds (Zoeller and Rovet 2004). Therefore, 
to establish a causal role of toxicant-induced 
low TH in the mechanism of neurotoxicity, 
it is important to show that T4 replacement 
can reverse the effects of toxicant. However, 
it is important to be cognizant of the relevant 
“windows” of vulnerability in the design of 
these experiments. For example, the impact 
of TH disruption on the development of 
auditory function in rats correlates well with 
circulating T4 levels during the second post-
natal week (Crofton 2004). This is entirely 
consistent with the known role of THs in 
auditory development (Uziel et al. 1981), the 
critical postnatal ontogeny of auditory func-
tion (Rubel 1978), and the pharmacokinetics 
of the chemicals tested (Crofton and Zoeller 
2005). In addition, this correlation estab-
lishes a prognostic power of early postnatal 
T4 for adverse consequence of developmental 
exposure to TDCs in rats (Crofton 2004). An 
understanding of the role of THs in develop-
ment, coupled with hormone level measure-
ment during the critical window, allows the 
establishment of a developmental mode of 
action that assigns a key causative role to TH 
disruption in the adverse outcome (Figure 4).

Studies designed to test for associations 
between toxicant exposures and circulat-
ing levels of TH in humans require careful 
consideration of confounding variables. For 
example, blood levels of TH vary among indi-
viduals (Andersen et al. 2002, 2003), which 
will affect the number of samples required 
for such a study to be sufficiently powered to 
identify associations of interest. In the case 
of newborn TH levels, a number of mater-
nal, infant, and delivery factors influence 
TH levels in cord blood and in infant serum 
(Herbstman et al. 2008), and these must be 

Figure 5. The predicted and empirical effects of a 
mixture of dioxins, furans, and PCBs on serum total 
T4 in rats. Predicted outcomes (additivity model) 
were generated using a single chemical-required 
additivity model. Empirical results (empirical model) 
showed a small but significant departure from 
dose additivity at the three highest mixture doses, 
whereas the remaining lower mixture doses were 
not significantly different than that predicted by 
additivity (modified from Crofton et al. 2005). 
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carefully considered when attempting to iden-
tify associations between toxicant exposures 
and serum TH levels. A good recent exam-
ple is that of Herbstman et al. (2008), who 
showed that PCB measures in cord blood 
were associated with circulating levels of TH 
only in those babies born via an unassisted 
vaginal delivery. Thus, these confounding 
variables may explain the studies in which 
PCB body burden has not been found to be 
associated with THs.

Sensitive Populations
There may be individuals within the general 
population who are more at risk than others 
(i.e., sensitive subpopulations). For example, 
because pregnancy causes an increased demand 
on the thyroid gland, pregnant women may 
be particularly sensitive to specific kinds of 
toxicants that produce an additional burden 
on the thyroid gland, such as perchlorate, or 
chemicals that activate liver metabolism of T4. 
Women in general appear to be more sensitive 
to the adverse effects of perchlorate (Blount 
et al. 2006), although it is not clear why. An 
estimated 7.3% of the U.S. population either 
have self-reported hypothyroidism or take thy-
roid medication, and three-quarters of these 
are women (Aoki et  al. 2007). More than 
17% of those > 12 years of age report taking 
medications known to alter TH levels (e.g., 
estrogen, lithium, androgens). Those 50–79 
and ≥ 80 years of age have a 2-fold and 5-fold 
increased risk of hypothyroidism, respectively, 
compared with those 12–49 years of age (Aoki 
et al. 2007). These are examples of large sub-
populations at risk with any additional expo-
sures that affect thyroid homeostasis.

The set-point around which THs are regu-
lated is very individualistic (Andersen et al. 
2002, 2003), and differences between individ-
uals in their set-point is largely determined by 
genetics (Hansen et al. 2004). Epidemiologic 
studies have identified elevated risk of car-
diovascular disease in patients with subclini-
cal hypothyroidism, characterized by elevated 

TSH with normal T4. Many studies identify 
that TDCs are associated with decreases in T4 
but not elevations in TSH. However, the low 
level of interference with thyroid homeostasis 
seen in subclinical hypothyroidism and with 
TDCs may be equivalent, suggesting that ele-
vated risk of cardiovascular disease should be 
considered possible from exposure to TDCs. 
The variance in serum T3, T4, and TSH 
in individuals is about half of the range of 
population variance, known as the “reference 
range,” as shown for T4 in Figure 6 (Andersen 
et al. 2002). Therefore, a value within stan-
dard “normals” is not necessarily normal for 
the individual, and an elevated TSH (which 
responds with a logarithmically amplified vari-
ation to minor changes in T3 and T4) should 
be interpreted as indicating that serum T3 and 
T4 levels are not normal for the individual 
(Andersen et al. 2002). Thus, it is highly likely 
that unidentified subpopulations exist that 
have particular sensitivity to thyroid disrup-
tion. The ability of epidemiologic studies to 
identify associations between thyroid disrup-
tors and cardiovascular (or other) outcomes 
may be diminished as a result of failure to 
recognize risk in individuals who may have 
T4 levels in the normal population range but 
below their own normal individual range. 
Therefore, any exposure that would result 
in altered TH homeostasis in a population 
should be considered an adverse effect.

Societal Burden
The burden to society of even small changes in 
function should not be dismissed or underes-
timated. The consequences of developmental 
lead exposure provide an informative example 
of the effects of a small shift in the IQ of a 
population. Lead exposure has been wide-
spread in the United States, although blood 
lead concentrations decreased from a mean 
toddler blood lead of 15 µg/dL to < 2 µg/dL 
over the past four decades with the introduc-
tion of nonleaded gasoline and other measures 

(Centers for Disease Control and Prevention 
2007). A mean toddler blood lead of 15 µg/dL 
would be expected to decrease population IQ 
by ≥ 5 points (Lanphear et al. 2005). Although 
the consequences of a 5-point decrease in an 
individual’s IQ may be difficult to discern, the 
impact of this 5% shift at the tails results in 
a 57% national increase in those classified as 
mentally retarded (IQ < 70) and a concomi-
tant decrease in individuals considered gifted 
(IQ > 130) (Schettler 2001; Weiss 1997).

Small decrements in maternal T4 or free 
T4 during the first trimester are associated with 
impaired neuropsychological development in 
the child (Haddow 2005; Haddow et al. 1999; 
Oerbeck et al. 2003, 2007; Pop et al. 1999, 
2003; Pop and Vulsma 2005). However, chil-
dren born to women with moderately low TH 
identified in these studies largely fall within the 
lower portion of the normal range for measures 
of neuropsychological function. Although they 
have lower IQ as a population, their individ-
ual IQ is in the normal range (Haddow 2005; 
Haddow et al. 1999).

The cardiovascular consequences of disrup-
tion of thyroid homeostasis also potentially 
affect a large portion of the adult population. 
As noted above, there is a linear association 
between TSH (including through the normal 
reference range) and both blood pressure and 
cholesterol (Asvold et al. 2007a, 2007b). The 
magnitude of these changes associated with 
changes in THs would be considered to confer 
minimal risk to an individual, even though 
the individual risk of myocardial infarction 
(MI) and death from MI increases linearly for 
increased systolic and diastolic blood pressure 
(U.S. EPA 1985) and serum cholesterol (Rose 
1981) (Figure 7). There is an important dis-
tinction that needs to be recognized, however: 
the difference between individual (relative) risk 
and population-attributable risk. Typically, 
the medical community assigns specific values 
for blood pressure and cholesterol as “high” or 
“borderline” to advise individuals on individual 

Figure 6. Individual versus population reference 
range for T4: the distribution of 12 monthly mea-
surements for 15 men compared with one indi-
vidual. The distribution width for the individual is 
approximately one-half that of the group [adapted 
from Andersen et al. (2002);  copyright 2002, The 
Endocrine Society].
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health risk. However, as illustrated in Figure 7, 
most of the morbidity in the population as 
a whole is associated with lower rather than 
higher levels, because a higher percentage of 
the population falls within the low to moderate 
range (Rose 1985; Rose and Day 1990).

The population-attributable risk can be 
used to monetize the societal burden of expo-
sure to chemicals that affect thyroid func-
tion. For example, the U.S. EPA estimated 
the effects of lead, which is associated with 
increases in both systolic and diastolic blood 
pressure, on cardiovascular function (U.S. EPA 
1985). The monetary burden of lost IQ associ-
ated with lead or methylmercury exposure has 
also been estimated at billions of dollars per 
year (Landrigan and Garg 2002; Trasande 
et  al. 2006). Similar estimations could be 
made for the burden of exposure to chemicals 
that decrease THs and result in IQ deficits or 
increased incidence of cardiovascular disease. It 
is important to recognize that these outcomes 
are not only relevant if “abnormal” (e.g., men-
tal retardation, clinically defined high blood 
pressure, or high cholesterol) but also relevant 
to outcomes in the “normal” range. Therefore, 
it is extremely important not to confuse the 
goal of minimizing population risk with argu-
ments focused on individual relative risk.

Conclusions
Two conclusions follow from the recognition 
that thyroid dysfunction affects multiple end 
points and that population-attributable risk is 
greater at levels associated with lower individ-
ual risk. First, from fetal life through old age, 
people are potentially vulnerable to adverse 
health effects as a consequence of exposure 
to TDCs. Second, any degree of thyroid dis-
ruption that lowers TH levels on a popula-
tion basis should be considered a biomarker 
of increased risk of adverse outcomes. Because 
TH insufficiency in both humans and exper-
imental animals results in serious neurode-
velopmental and cardiovascular effects with 
large societal costs, chemicals with the abil-
ity to affect thyroid homeostasis should be 
carefully evaluated for potential population 
impacts. Finally, considering the complexity 
of the regulatory mechanisms affecting TH 
signaling and the variety of known TDCs that 
affect the thyroid system at different points of 
regulation, it will be essential to incorporate 
new information in human risk assessment 
strategies as it becomes available.
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